单选题
求解两个长度为n的序列X和Y的一个最长公共子序列(如序列ABCBDAB和BDCABA的一个最长公共子序列为BCB
A)可以采用多种计算方法。如可以采用蛮力法,对X的每一个子序列,判断其是否也是Y的子序列,最后求出最长的即可,该方法的时间复杂度为(请作答此空)。经分析发现该问题具有最优子结构,可以定义序列长度分别为i和j的两个序列X和Y的最长公共子序列的长度为c[i,j],如下式所示。
采用自底向上的方法实现该算法,则时间复杂度为( )

AO(n^2)
BO(n^21gn)
CO(n^3)
DO(n2^n)
正确答案
答案解析
蛮力法,对X的每一个子序列,判断是否也是Y的子序列,其中,长度为n的序列X共有2^n个子序列,判断其是否是Y的子序列时间是n,因此是n*2^n;采用动态规划法自底向上实现时,根据递归公式,实际是关于i和j的两重循环,因此时间复杂度是n^2.