试题详情

单选题
设函数y1,y2,y3都是线性非齐次方程y″+p(x)y′+q(x)y=f(x)的不相等的特解,则函数y=(1-c1-c2)y1+c1y2+c2y3(  )。(c1,c2为任意常数)

A是所给方程的通解

B不是方程的解

C是所给方程的特解

D可能是方程的通解,但一定不是其特解

正确答案

答案解析

由于y1,y2,y3都是y″+p(x)y′+q(x)y=f(x)的不相等的特解,则y2-y1,y3-y1是它对应的齐次方程的特解,故y=(1-c1-c2)y1+c1y2+c2y3=y1+c1(y2-y1)+c2(y3-y1)是非齐次方程y″+p(x)y′+q(x)y=f(x)的解,但是,由于无法确定y2-y1与y3-y1是否为线性无关,故不能肯定它是y″+p(x)y′+q(x)y=f(x)的通解。

相关试题