相关试题
-
求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.
-
设D为曲线y=1-x2,直线y=x+1及x轴所围成的平面区域(如图1-3—1所示)· ①求平面图形的面积; ②求平面图形D绕x轴旋转一周所成旋转体的体积Vx.
-
①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S: ②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.
-
由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体的体积为:
-
(1)求曲线Y=ex及直线x=1,x=0,y=0所围成的平面图形(如图3—3所示) 的面积A. (2)求(1)中平面图形绕x轴旋转一周所得旋转体的体积Vx.