AA
BB
CC
DD
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵, 若矩阵Q=(a1,a2,a3),则Q-1AQ=
设分块矩阵,其中的子块A1、A2为方阵,O为零矩阵,若A可逆,则( )。
设A是三阶矩阵,a1(1,0,1)T,a2(1,1,0)T是A的属于特征值1的特征向量,a3(0,1,2)T是A的属于特征值-1的特征向量,则:
设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且
首页
每日一练
打赏一下
浏览记录