设某消费者的效用函数为柯布-道格拉斯类型的,即U=x^αy^β,商品x和商品y的价格分别为Px和Py,消费者收入为M,α和β为常数切α+β=1 (1)求该消费者关于商品x和商品y的需求函数。 (2)证明:当商品x和y的价格及消费者的收入均以相同的比例变化时,消费者对两商品的需求关系维持不变; (3)证明:该消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。
相关试题
-
。 (2)证明:当商品x和y的价格及消费者的收入均以相同的比例变化时,消费者对两商品的需求关系维持不变; (3)证明:该消费者效用函数中的参数α和β分别为商品x和商品y的消费支出占消费者收入的份额。
-
假定某消费者的效用函数为 两商品的价格分别为P1、P2,消费者的收入为M。求该消费者关于商品1和商品2的需求函数。
-
某消费者的效用函数为U=X1X2,两商品的价格分别为P1=4、P2=2,消费者的收入是M=80.现在假定商品1的价格下降为P1=2.求: (1)由商品1的价格P1下降导致的总效应,使得该消费者对商品1
-
已知某消费者每月用于商品X和商品Y的支出为540元,两种商品的价格分别为商品X的价格为20元,商品Y的价格为30元,该消费者的效用函数为U=3XY²,该消费者每月购买X,Y商品的数量是多少?
-
假定某消费者的效用函数为U=q^0.5+3M,其中,q为某商品的消费量,M为收入。 求:(1)该消费者的需求函数;(2)该消费者关于该商品的反需求函数;(3)当p=1/12、q=4时的消费者剩余。